Mechanisms of noise-resistance in genetic oscillators.

نویسندگان

  • José M G Vilar
  • Hao Yuan Kueh
  • Naama Barkai
  • Stanislas Leibler
چکیده

A wide range of organisms use circadian clocks to keep internal sense of daily time and regulate their behavior accordingly. Most of these clocks use intracellular genetic networks based on positive and negative regulatory elements. The integration of these "circuits" at the cellular level imposes strong constraints on their functioning and design. Here, we study a recently proposed model [Barkai, N. & Leibler, S. (2000) Nature (London), 403, 267-268] that incorporates just the essential elements found experimentally. We show that this type of oscillator is driven mainly by two elements: the concentration of a repressor protein and the dynamics of an activator protein forming an inactive complex with the repressor. Thus, the clock does not need to rely on mRNA dynamics to oscillate, which makes it especially resistant to fluctuations. Oscillations can be present even when the time average of the number of mRNA molecules goes below one. Under some conditions, this oscillator is not only resistant to but, paradoxically, also enhanced by the intrinsic biochemical noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Phase Noise Reduction Technique in LC Cross-coupled Oscillators with Adjusting Transistors Operating Regions

In this paper, an intuitive analysis of a phase noise reduction technique is done, and then a modified structure is proposed to achieve higher phase noise reduction than the original one. This method reduces the impact of noise sources on the phase noise by decreasing closed-loop gain in zero-crossings points and moving this high closed-loop gain to the non-zero-crossings points. This reduction...

متن کامل

Fluidic Oscillators’ Applications, Structures and Mechanisms – A Review

Enhancement of heat and mass transfer and decrease of energy dissipation are great necessities of the evolution of fluid flow devices. Utilizing oscillatory or pulsatile fluid flow for periodic disturbing of velocity and thermal boundary layers is one of the methods with exciting results. Passive methods of generating oscillatory flow are preferred to active methods because of simplicity, no ne...

متن کامل

The Transient Behavior of LC and Ring Oscillators under External Frequency Injection

 In this work, time domain analysis is used to solve Adler’s equation in order to obtain the required time, for an oscillator under external injection, reaching the steady-state condition. Mathematical approach has been applied to fully describe the transient of frequency acquisition in injection-locked LC and Ring oscillators considering their time-varying nature. Then, the analysis is verifie...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

ISSCC 2004 / SESSION 21 / 21 . 1 21 . 1 Circular - Geometry Oscillators

Demand for faster data rates in wireline and wireless markets has resulted in tighter jitter and phase noise requirements for oscillators. Although active device noise (and not the resonator noise) dominates the phase noise of most CMOS oscillators [1], in a properly designed oscillator, the quality factor, Q, of the resonant tank indirectly plays a central role in the phase noise. The best pha...

متن کامل

Are generalized synchronization and noise–induced synchronization identical types of synchronous behavior of chaotic oscillators?

This paper deals with two types of synchronous behavior of chaotic oscillators — generalized synchronization and noise–induced synchronization. It has been shown that both these types of synchronization are caused by similar mechanisms and should be considered as the same type of the chaotic oscillator behavior. The mechanisms resulting in the generalized synchronization are mostly similar to o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 9  شماره 

صفحات  -

تاریخ انتشار 2002